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Abstract

Proactively coordinating one’s actions is an important aspect of multitasking performance due to 

overlapping task sequences. In this study, we used functional magnetic resonance imaging (fMRI) 

to investigate neural mechanisms underlying monitoring of multiple overlapping task sequences. 

We tested the hypothesis that temporal control demands in multiple-task monitoring are offloaded 

onto spatial processes by representing patterns of temporal deadlines in spatial terms. Results 

showed that increased demands on time monitoring (i.e., responding to concurrent deadlines of 

1–4 component tasks) increasingly activated regions in the left inferior parietal lobe (IPL) and the 

precuneus. Moreover, independent measures of spatial abilities correlated with multiple-task 

performance beyond the contribution of working memory. Together, these findings suggest that 

monitoring and coordination of temporally overlapping task timelines rely on cortical processes 

involved in spatial information processing. We suggest that the precuneus is involved in tracking 

of multiple task timelines, whereas the IPL constructs spatial representations of the temporal 

relations of these overlapping timelines. These findings are consistent with the spatial offloading 
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hypothesis and add new insights into the neurocognitive mechanisms underlying the coordination 

of multiple tasks. 
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Introduction

Modern life imposes increasing demands on our ability to keep track of multiple overlapping 

tasks that include various timelines and deadlines. For example, we may pay attention to TV 

programs or cell phone notifications, while taking care of the household or work. During 

multitasking, several different tasks, or instances of the same task, are combined and executed in 

concert with overlapping timelines (Burgess, Veitch, de Lacy Costello, & Shallice, 2000; Oswald, 

Hambrick, & Jones, 2007; Strobach, Wendt, & Janczyk, 2018). Previous behavioural (Hambrick, 

Oswald, Darowski, Rench, & Brou, 2010; Konig, Buhner, & Murling, 2005; Logie, Cocchini, 

Delia Sala, & Baddeley, 2004; Meyer & Kieras, 1997) and neuroimaging (Collette et al., 2005; 

Deprez et al., 2013; Hsu, Zanto, Anguera, Lin, & Gazzaley, 2015; Kübler & Schubert, 2017; 

Medeiros-Ward, Watson, & Strayer, 2015; Nijboer, Borst, van Rijn, & Taatgen, 2014; Stelzel, 

Kraft, Brandt, & Schubert, 2008; Strobach, Antonenko, Schindler, Flöel, & Schubert, 2016; 

Szameitat, Lepsien, Cramon, Sterr, & Schubert, 2006; Tschernegg et al., 2017; Verghese, Garner, 

Mattingley, & Dux, 2016) studies indicate that executive functions play a critical role in 

multitasking. However, most studies typically concern isolated, experimentally tractable, aspects 

of dual- and multitasking, using structured or bottom-up controlled paradigms (see also Logie, 

Trawley, & Law, 2011). 

In contrast, everyday multitasking usually involves planned (top-down controlled) task 

management (e.g., preparing breakfast or carrying out multiple errands, Craik and Bialystok 2006; 

Logie et al. 2011), with high demands on time keeping (i.e. keeping track of overlapping task 

timelines and deadlines). Executive control demands are typically high in proactive tasks, but these 

accentuated control requirements can be alleviated by relying on prior knowledge and experience 

(Loukopoulos, Dismukes, & Barshi, 2009; Wickens, 2008), as well as cognitive offloading 
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strategies (Risko & Gilbert, 2016). Specifically, studies in different domains of cognitive sciences 

have shown that humans can change the task requirements (and affordances) by relying both on 

internal and external representations of the task (Wilson & Golonka, 2013; Zhang & Norman, 

1994; for an overview, see also Risko & Gilbert, 2016).

Reflecting this offloading perspective, we have previously proposed a mechanism for 

alleviating control demands in multitasking performance. In detail, when task-specific knowledge 

is not available or insufficient, temporal control demands during multitasking are offloaded onto 

spatial abilities by representing patterns of temporal deadlines in spatial terms (Mäntylä, 2013; 

Todorov, Del Missier, Konke, & Mäntylä, 2015). This idea resonates with similar views of “time-

to-space-mappings” in other domains of cognitive sciences which suggest that temporal and spatial 

processing are closely related (e.g., Bonato, Zorzi, & Umiltà, 2012; Dehaene & Brannon, 2011; 

Gijssels, Bottini, Rueschemeyer, & Casasanto, 2013; Núñez & Cooperrider, 2013). This spatial 

offloading hypothesis is supported by several studies showing that spatial ability (i.e. mental 

rotation) and executive functioning (i.e. working memory updating) are independent predictors of 

multitasking performance, and that spatial ability predicts multitasking over and beyond executive 

functioning (Logie et al., 2011; Mäntylä, 2013; Mäntylä, Coni, Kubik, Todorov, & Del Missier, 

2017; Morgan et al., 2013; Todorov, Del Missier, & Mäntylä, 2014; Todorov, Kubik, Carelli, Del 

Missier, & Mäntylä, 2018). Moreover, it was shown that multitasking, compared to dual-tasking, 

involves an incremental contribution of spatial ability (Kubik, Zimmermann, Del Missier, Frick, 

& Mäntylä, 2018, 2019), and that concurrent spatial load selectively impairs multitasking 

performance (Mäntylä et al., 2017; Todorov et al., 2018).

The aim of this study was to test a central assumption of the spatial offloading hypothesis, 

namely that spatial processes are involved when keeping track of multiple overlapping task 
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timelines. Accordingly, we expected neural areas involved in spatial processing, especially 

superior and inferior parietal cortex (Cohen et al., 1996; Halari et al., 2006; Jordan, Heinze, Lutz, 

Kanowski, & Jäncke, 2001; Kesner & Long, 1998; Richter, Ugurbil, Georgopoulos, & Kim, 1997; 

Sack, 2009; Zacks, 2008), and the hippocampus (Eichenbaum, 2017) to be incrementally engaged 

when the demands on time monitoring are increased using parametric analyses. Additionally, a 

model-based approach was used to investigate whether the spatial offloading hypothesis is specific 

to multitasking situations (see Mäntylä, 2013), or generally valid for time monitoring tasks in a 

wider range of situations (see also Kubik et al., 2018, 2019). Specifically, we tested whether 

recruitment of spatial processing areas increases gradually with time monitoring demands 

(approximated by a linear increase model, reflecting general processes), or whether spatial 

processing areas are selectively recruited when the demands on time monitoring reach a threshold, 

for example only during multitasking situations (i.e. following a step-like pattern).

Methods

Participants

Twenty-four healthy, right-handed participants between 18–35 years (M [SD]; 27.9 [4.1]; 

12 female) took part in the study. Participants were recruited from a large-scale behavioral study, 

in which they completed a series of cognitive tasks, including tests of mental rotation, working 

memory, and different versions of time-based monitoring tasks (see also Kubik et al., 2018, 2019). 

The behavioral study was completed approximately six months before the fMRI study. All 

participants were screened for claustrophobia, neurological, and psychiatric medications, MRI 

contraindication, and all had normal or corrected to normal vision using scanner compatible 

glasses or contact lenses. One participant was excluded from the analysis due to excessive head 
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movements (>3 mm) during all scanning sessions. Participants received financial compensation of 

600 SEK for participation. The study was approved by the Regional Ethical Review Board in 

Stockholm and written consent was obtained from all participants before the study commenced.

Tasks

Countdown task

Monitoring of multiple timelines was tested with an adapted version of the counter-task paradigm 

(Mäntylä, 2013; Todorov et al., 2014). In the original version, participants monitor a number of 

counters (clocks) and respond to predefined targets (e.g. Mäntylä, 2013). For the adapted version 

used here, forward-running counters of numbers were replaced with backward-running letter-loops 

(letter countdowns) with fixed targets (Figure 1). Therefore, in the current task, inherent spatial 

processing was reduced by removing the need to update and maintain (numerical) target values, 

and thus reducing possible spatial associations of the stimuli (further spatial associations due to 

stimulus–response mappings are controlled for using a control task; see below). This adapted task 

was recently shown to be highly correlated to and reveal similar associations with the cognitive 

reference measures (e.g. executive functioning, spatial ability) as the original counter task (Kubik 

et al., 2018, 2019). Time monitoring demands were manipulated by varying the number of letter 

countdowns that had to be monitored and responded to. Specifically, the task included conditions 

with one to four letter countdowns at a time. Letter countdowns consisted of loops of letter series 

that followed the alphabet backwards (e.g. H-G-F-E-…), until A, at which point (after a 2-second 

pause) the loop started again (here referred to as a single countdown series). The letter A was 

defined as a target letter for each countdown series. Participants had to respond to the occurrence 
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of the target letter as accurately as possible by pressing a target button. Multiple countdown series 

formed a trial, during which a number of countdowns, varying from one to four (referred to as 

conditions), had to be monitored and responded to continuously for 60 s. Importantly, letter 

countdowns were not continuously visible; instead, participants needed to uncover them by 

pressing one of four monitor buttons. This displayed the corresponding countdown for 1 s, while 

no other countdowns could be displayed. Target-button presses were assigned to the latest 

monitored countdown. Thus, participants had to make sure that, prior to indicating a target 

occurrence, the corresponding countdown was displayed last. The target button could, but did not 

have to, be pressed while the corresponding countdown was displayed. Upon pressing the target 

button, the monitored countdown changed into hidden state again, allowing for displaying of other 

countdowns. Monitor buttons and target buttons were assigned to MR compatible button boxes, 

with four monitor buttons to be pressed with the fingers of the right hand, and a single target button 

to be pressed with the left index finger. Countdowns (after pressing the color-matched monitor 

button) were presented centrally on the screen to reduce eye movements and changes in spatial 

layout.

To prevent cross-task monitoring (i.e., predicting the state of another countdown), and to 

match the number of targets between trials with varying numbers of countdowns, each letter series 

progressed at different rates and covered different series lengths (e.g., F to A at a slow rate, or L to 

A at faster rate). Updating rates (i.e. the time between two letter changes in a series of a given 

countdown) were adjusted for the number of countdowns. For example, for the 4-countdown trials, 

the updating rates were 816, 1376, 1536, and 1568 ms, respectively. For trials with less than 4 

countdowns, updating rates were randomly selected from the 4 possible updating rates, and 

adjusted to ¾, ½, or ¼ of the updating rate intervals for 4 countdown trials, for trials with 
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respectively 3, 2, and 1 countdowns. Correspondingly, to warrant similar number of targets per 

countdown, countdowns started (and restarted after reaching target state) at varying letters, with 

series lengths of 25, 16, 11, and 10 letters, for the fastest to slowest updating rates, respectively. 

Using these parameters, each trial of 60 seconds contained 8–10 evenly distributed targets, 

independently of the number of countdowns, and independently of the randomly selected 

countdown settings (for trials with less than 4 countdowns). The assignment between monitor 

buttons and countdowns (in terms of updating rate/series lengths) was randomized for each trial.

<< Insert Figure 1 about here >>

A control task was introduced to control for spatial mapping of stimulus–response 

associations, visual stimulation, and motor output. Critically, the control task did not require (or 

enable) time monitoring as both monitoring and target occurrence was random to the participant. 

Similar to the experimental task, the control task was presented in trials consisting of 1 to 4 random 

letter series (here referred to as control countdowns). Control countdowns contained random letters 

(A–Z) that were presented automatically for 1 second (comparable to actively monitored 

countdown series during the experimental task). Participants were asked to press the corresponding 

monitor button upon presentation of a control countdown series, and to press the target button 

when a letter A was shown. The timing of control countdown appearances was based on the active 

monitoring behavior (experimental task) of a pilot participant. Therefore, the control task provides 

condition-matched control conditions (i.e. in terms of number of simultaneous countdowns and 

monitor buttons per condition), visual input, and motor output (both monitor- and target-button 

presses, reflecting timing and complexity/number of response options). 

The experiment consisted of five runs, including three runs of the experimental task, 

intermitted by two runs of the control task (exp – con – exp – con – exp). Experimental task runs 
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consisted of 2 blocks, and each block contained 4 trials, one per condition (1–4 countdowns). 

Control-task runs consisted of 1 block with 4 trials each, one per condition (1–4 control 

countdowns). Trial order within each block was randomized. Each trial lasted 60 seconds, during 

which 8–10 targets appeared. A 20-second break was given between two successive trials/blocks 

during which a cross hair was displayed centrally on the screen. After each run (experimental or 

control task), the scanner was stopped and a variable break was given to the participant. 

Participants remained inside the scanner between runs. Participants were informed verbally and 

visually about the upcoming task (experimental or control), and the experiment continued when 

participants indicated they were ready to do so. 

The main behavioral outcome measure was monitoring accuracy, calculated as the ratio of 

successful attempts to indicate the occurrence of target items, relative to all target occurrences. 

The temporal discrepancy between target occurrence and response was taken as temporal 

(in)accuracy. This included early responses (i.e. before the target occurred) as well as late 

responses (response after target occurred). For further analyses, only absolute values (i.e. temporal 

offset) were used. Overall monitoring accuracy was calculated over all countdowns within a 

condition. Moreover, monitoring accuracy was calculated at a countdown level, that is – for each 

trial – the accuracy on every single countdown. These countdown-specific monitoring accuracy 

was sorted by performance into best, 2nd best, 3rd best, and 4th best countdown (as far as applicable 

for conditions with less than 4 countdowns), such that performance of, for example, the best 

countdowns could be compared between conditions (i.e. depending on the number of additionally 

monitored countdowns). Only the first target-button press was recorded for each countdown series 

(i.e. between two targets), and data from additional target button presses to the same 

countdown/target were not considered further. To allow for early and late responses, target button 

Page 9 of 53 Journal of Cognitive Neuroscience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

presses that occurred shortly after a target appearance (up to 20% of the target interval), were 

assigned to the previous target (i.e. late responses), and the remaining target button presses were 

assigned to the upcoming target (i.e. early responses). Target-button presses that occurred more 

than 3 seconds from the target were removed from the behavioral data analysis since these 

responses could not reliably be assigned to a specific target or counter (< 1%). Therefore, only 

target button presses close to a target occurrence were analyzed. The interquartile range (IQR; 

quartile 3 – quartile 1) rule of IQR × 1.5 (Tukey, 1977) was used for detecting the presence of 

outliers in target button presses. Accordingly, target button presses with discrepancies that were 

below Q1 – 1.5 IQR or above Q3 + 1.5 IQR (Tukey, 1977) were removed as outliers (5.22%). A 

secondary behavioral outcome measure was monitoring behavior, specifically the distribution of 

monitoring actions over time.

Spatial ability and working memory

Spatial processing and working memory skills were tested in all participants within the large-

scaled behavioral study reported elsewhere (Kubik et al., 2018, 2019). From these data, measures 

of spatial ability and working memory performance were used in the current study.

Spatial ability was measured with the redrawn version of the mental rotation test (MRT, 

version A; Peters et al., 1995; Vandenberg & Kuse, 1978). This pen-and-paper task contained 12 

items. Each item was made up of a target cube construction and four probes. Two of the probes 

matched the target cube construction, however, rotated around multiple axes relative to the target 

cube construction; two other probes did not match the target cube construction. The matching cube 

constructions had to be identified by the participants. It is assumed that participants mentally rotate 

the figures and try to match them to each other. Participants had three minutes to solve as many 

items as possible. For each participant, we counted the number of correctly answered items (with 
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“correct” referring to having identified both matching cube constructions, and none of the non-

matching probes), within the three minute period.

Working memory was measured using verbal and spatial binding tasks (Wilhelm, Hildebrandt, 

& Oberauer, 2013). The verbal (letter–color) binding task consisted of 15 trials, in which a short 

list of letter–color pairs were sequentially presented for 1 s each (ISI = 3 s). Similarly, the spatial 

(letter–location) binding task consisted of 14 trials, during which a list of letters were presented 

sequentially for 1.5 s (ISI = 0.5 s) at specific locations within a 3 × 3 grid. Load levels ranged from 

2 to 6 pairs. After each trial, participants were asked to remember the letter–color and letter–

location pairs in a cued recall test. In half of the test trials, participants were probed with the letters 

and had to select/indicate the corresponding color/location; for the other half, participants were 

probed with the color/location, and had to select the corresponding letter (for more details see 

Kubik et al., 2018, 2019). The average performance (proportion correct responses) over both tasks 

was used as measure for participants’ ability of working-memory binding.

Behavioral data analysis

Behavioral data obtained during the multitasking (countdown) task was analyzed in terms of 

performance (monitoring accuracy, countdown-specific monitoring accuracy, temporal accuracy) 

and monitoring behavior. Performance was measured by overall target detection (monitoring 

accuracy; in line with previous studies Kubik et al., 2018, 2019; Mäntylä, 2013; Todorov et al., 

2014), and temporal accuracy, a more sensitive measure (see “Countdown task”). Monitoring 

accuracy and temporal accuracy were analyzed using one-way ANOVAs, with condition as a 

within-subjects factor, followed by pairwise comparisons between conditions where applicable. 
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Furthermore, countdown-specific monitoring accuracy (see “Countdown task”) was compared 

between the single best countdowns of each condition (as well as additional counters) between 

conditions. To test and demonstrate possible relations to spatial processing (as in a spatial 

offloading mechanism), monitoring accuracy was correlated with participants’ spatial abilities 

(mental rotation task), both for overall performance, and for performance on the best counters for 

each condition. Moreover, following previous studies showing that spatial abilities (MRT) explain 

multitasking performance (monitoring accuracy) beyond working-memory skills and executive 

functioning (Kubik et al., 2018, 2019), monitoring accuracy was correlated with mental rotation 

abilities after correction for working-memory abilities. Therefore, partial correlations were 

computed between monitoring accuracy, spatial ability, and working memory.

Monitoring behavior was analyzed in terms of monitoring actions per condition, overall (i.e. 

number of monitoring actions per trial), and over time. One purpose of analyzing monitoring 

behavior was to verify and demonstrate that participants proactively plan their monitoring 

behavior. Moreover, by comparing monitoring behavior between conditions, we aimed to 

demonstrate that demands on time monitoring increase with an increasing number of monitored 

countdown series. For overall monitoring behavior, monitoring actions were counted for each 

condition, and compared using one-way ANOVAs, followed by posthoc comparisons where 

applicable. Furthermore, monitoring behavior was analyzed in a time-resolved manner: monitoring 

actions were time-locked to target onsets on a countdown-series specific basis (e.g. timing of 

monitoring of the red countdown relative to the target occurrence of the red countdown), and split 

in bins of 500 ms duration. Only the final 6 seconds (12 bins) before target onset were considered 

during this analysis, such that all conditions covered the analyzed period (based on target-to-target 

intervals). Time bins were categorized into ‘early’ bins (6–3 seconds before target onset) and ‘late’ 

Page 12 of 53Journal of Cognitive Neuroscience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

bins (1.5–0 seconds before target onset). Time-resolved monitoring behavior was analyzed in a 

two-way ANOVA with factors time (early, late) and condition (number of countdowns). A 

significant Time × Condition interaction was followed up by time-specific one-way ANOVAs 

(testing for effects of condition within each epoch; followed by pairwise posthoc comparisons 

between conditions where applicable). Ratios between early and late monitoring behavior were 

calculated by dividing the (average) number of monitoring actions during early time bins by the 

(average) number of monitoring actions during the late time bins for each condition. Ratios were 

compared between conditions using repeated measures ANOVA.

MR data acquisition and preprocessing

A 3T MRI scanner (GE Discovery MR 750; General Electric, Boston, MA, USA) with an 

8-channel head coil was used for acquiring functional and structural MR images. Anatomical 

images were acquired using a T1-weighted sequence (TR/TE = 6400/2800 ms, voxel size: 1 × 1 × 

1 mm). Blood-oxygen-level-dependent (BOLD) signal was recorded with a whole-brain T2*-

weighted echo-planar imaging sequence (TR/TR = 2000/30 ms; voxel size: 3 × 3 × 3 mm, gap 

size: 0.5 mm). The task was divided into 3 experimental runs of 11.2 minutes each and 2 control 

runs of 5.7 minutes each during which 336 and 172 volumes were recorded, respectively. 

Additional diffusion-tensor imaging and resting-state fMRI scans were acquired after the task 

fMRI scans. This data is not part of the current report.

Images were preprocessed using SPM12 (Wellcome Centre for Human Neuroimaging, 

University College London, UK), and ICA-AROMA (Pruim et al., 2015) as part of FSL v5.0 

(FMRIB’s Software Library). SPM-based preprocessing included spatial realignment, slice time 
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correction and co-registration of the functional images to the structural image of each participant. 

All brains were normalized to the MNI template using the unified segmentation procedure, and 

resampled to 2 × 2 × 2 mm voxel size. Functional images were smoothed using a 6 mm full width 

at half maximum (FWHM) Gaussian kernel. Next, AROMA was used to remove movement related 

artifacts. BOLD signals from white matter, cortico-spinal fluid and out of brain areas, obtained 

from the segmentation in SPM, were extracted, and removed from the fMRI time using linear 

regression, and the data was filtered using a 128 s high pass filter.

fMRI data analysis

For single subject analyses, separate general linear models were constructed for each run, 

modelling trials using boxcar functions, with separate regressors for each condition (i.e. number 

of countdowns), with a length corresponding to the block length. The purpose of these regressors 

was to capture underlying state activation during monitoring of one, two, three or four overlapping 

task timelines. Additional regressors were constructed to model button presses and visual 

stimulation. Using FEAT (part of FSL), we first estimated statistical parametric maps 

corresponding to each condition within each run. Next, in a second level fixed-effect analysis, we 

calculated the contrast of BOLD signal during the experimental task and the control task, 

separately for each condition/number of countdowns. This resulted in four whole-brain maps per 

participants, corresponding to the BOLD signal difference between experimental and control task 

for 1, 2, 3 and 4 letter series (i.e., exp1 > con1, exp2 > con2, exp3 > con3, exp4 > con4; in the 

remainder referred to as conditions), which were used for group-level random-effect analyses.
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We used complementary approaches for group-level random effect analyses of the 

functional imaging data. In a contrast-based approach, we analyzed the activation corresponding 

to each of the experimental conditions (i.e. monitoring 1-4 deadlines), compared to the 

corresponding control conditions, and then directly compared activation maps corresponding to 

different conditions/numbers of parallel countdowns. In a complementary model-based approach, 

we identified brain regions that followed linear and step-function increases with the number of 

parallel countdown series, and compared the model fits. These analyses are described in detail 

below.

Part I: Contrast-based analyses

We obtained neural activation maps for each experimental condition of the multitask paradigm, 

corrected for activation during the corresponding control-task condition. Specifically, for each 

condition (i.e. number of parallel countdowns, 1–4), we compared the whole-brain activation maps 

between the experimental and the control task in a group analysis, treating subjects as random 

effects using nonparametric paired t-tests in PALM (Permutation Analysis of Linear Models; 

Winkler, Ridgway, Webster, Smith, & Nichols, 2014). The resulting condition-specific activation 

maps were compared between the different conditions (i.e. number of component tasks, corrected 

for condition-specific control-task activation) using nonparametric F- and t-tests. First, we 

performed a one-way within-subject (repeated measures) ANOVA (F-test) with 4 levels (reflecting 

the 4 conditions). The F-test was followed up with condition-specific comparisons (nonparametric 

paired t-tests), using the significant clusters obtained from the F-test as mask. Second, we 

performed whole-brain, condition-specific comparisons. For this comparison, 1-tailed one-sample 

t-tests of the difference maps (i.e. 2v1, 3v1, 4v1, 3v2, 4v2, 4v3) were used to identify increased 
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brain activation as a function of increased numbers of parallel monitored countdowns. All 

inferential statistics were performed using permutation testing (sign flipping) with 1000 random 

permutations, combined with gamma acceleration to improve p-value estimates. Significant 

clusters were identified using a cluster-defining threshold of Z > 3.1 (corresponding to p(unc )< 

.001), and cluster-corrected threshold of p(FWE) < .05 (Worsley, 2001).

Part II: Model-based analyses

For the model-based approach, we identified brain regions that showed activation patterns 

that corresponded to four proposed theoretical models (Figure 2). Models followed a priori 

predictions how activation depends on the number of counters in different parts of the brain, 

following different versions of the spatial offloading hypothesis. Specifically, a linear increase 

model (Figure 2A), where activity increases linearly with the number of monitored countdowns, a 

multi-task (3+) step model (Figure 2C), with high activation levels for 3 and more tasks, relative 

to 1 and 2 tasks, and finally, a dual-task step model (Figure 2B), with a high activation level for 2 

and more monitored series, relative to 1 series. Multi- (or dual-) task specific spatiotemporal 

processes should follow a multi- (or dual-) task step model activation pattern, whereas general 

spatiotemporal processes should follow the linear increase model. Importantly, given that these 

models are implicitly tested against a null model (i.e. no systematic activation differences 

depending on the number of monitored countdowns), for spatiotemporal offloading mechanisms 

to be supported, a model needs to explain activation differences in cortical regions related to spatial 

processing. The pattern of this activation (e.g. linear vs multi-task step increase) will provide 

information about the specificity (with respect to dual- or multi-task) of such a spatiotemporal 

offloading process.
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<< Insert Figure 2 about here >>

For each participant, we used FEAT to obtain model-specific activation maps from the 

[experimental – control task] contrast images for each number of component tasks (see Part I: 

Contrast-based analyses). Group average model activation maps were obtained using PALM, 

using 1000 permutations, gamma acceleration (Winkler, Ridgway, Douaud, Nichols, & Smith, 

2016), and whole-brain masking. Moreover, we obtained differences between model activation 

maps by pairwise comparison of model-specific activation maps, using PALM (1000 permutation, 

gamma acceleration, whole-brain masking). We used a cluster-defining threshold of Z > 3.1 

(corresponding to p(unc) < .001), and cluster corrected threshold of p(FWE) < .05 (Worsley, 2001) to 

identify significant clusters. Only positive relationships (i.e. activation increases following the 

models) were considered. For visualization purposes, we extracted parameter estimates from the 

identified affected regions (i.e. significant clusters in any of the model-based analyses) for each 

condition-specific neural activation map (i.e. number of countdowns). Mean parameter estimates 

were extracted from regions of interest centered on the peak coordinates of affected regions 

(sphere-shaped, 5 mm radius).

Region of interest analysis: hippocampus

In addition to whole-brain analyses, we analyzed activation in two regions of interest (ROI), the 

left and right hippocampus. ROIs were defined based on a probabilistic atlas (Harvard-Oxford 

subcortical structural atlas, part of FSL). ROIs for left and right hippocampus were based on 
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maximum probability for left and right hippocampus, with a lower limit requirement of 50% 

probability. Parameter estimates of the experimental – control task contrasts were extracted for 

both ROIs. Parameter estimates were compared between conditions using 1-way ANOVAs, and 

fitted to a set of pre-defined models (see Figure 2). Model-fitting was performed using the FITLM 

function in MatLab to obtain the Akaike information criterion (AIC; Akaike, 1974) as well as R-

squared values for each model/ROI.

Brain-behavior correlations

To investigate whether inter-individual differences in behavioral performance during 

multitasking can be directly related to inter-individual differences in brain function, we correlated 

measures of behavioral performance with measures of brain activation in the set of affected 

regions. Specifically, we created regions of interest for each affected region (based on any of the 

model-based analyses, see “Model-based analyses”), using sphere-shaped regions of interest (5 

mm radius) centered on the peak coordinates of the affected regions. Parameter estimates of the 4-

countdown condition (i.e. multitask-specific activation), as well as the difference between 4- and 

2-countdown conditions (i.e. activation during multitasking corrected for dual-tasking), were 

correlated with corresponding measures of behavioral performance (i.e. monitoring accuracy 

during multitasking and monitoring accuracy during multitasking divided by monitoring accuracy 

during dual-tasking condition, respectively) and measures of spatial ability (MRT scores), using 

Spearman’s rank correlations.

Results
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Behavioral results 

Monitoring accuracy (proportion correctly identified target letters) was not significantly 

affected by the number of monitored countdown series (F(3,69) = 1.17, p = .329, η2 = .003). 

Specifically, participants correctly identified a high number of countdown targets independent of 

the number of monitored countdown series (1 countdown: 0.83 ± 0.21 (mean ± SD); 2 countdowns: 

0.83 ± 0.19; 3 countdowns: 0.81 ± 0.19; 4 countdowns: 0.81 ± 0.18; Figure 3A). However, an 

analysis of countdown-specific monitoring accuracy (i.e. monitoring accuracy for individual 

countdown series within each trial) revealed that performance of the best countdown series 

increased with the number of monitored countdown series (Figure 3B). The same pattern was 

observed for the 2nd and 3rd best countdown series of the dual- and multi-tasking conditions. 

Whereas overall monitoring accuracy did not show significant correlations with mental rotation 

scores (all p > .10), accuracy for the best countdown in each trial did correlate significantly with 

MRT scores for the multitasking conditions (3 countdowns: r = .459, p = .032; 4 countdowns: r = 

.511, p = .015), however, not significantly with the single-task condition (r = .373, p = .087) and 

dual-task condition (r = .420, p = .052). Partial correlations between MRT and monitoring 

accuracy, corrected for individual working memory skills, were significant for the best countdown 

in the 4-countdown condition (r = .467, p = .033). Partial correlations for best countdowns of other 

conditions were not significant (3 countdowns: r = .429, p = .053; 2 countdowns: r = .405, p = 

.069; 1 countdown: r = .366, p = .103). Performance for added countdowns (i.e. 2nd best, 3rd best, 

4th best countdown series) did not correlate with MRT scores (all p > .10) and none of the partial 

correlations for 2nd, 3rd and 4th best countdowns were significant (all p > .10).

Temporal accuracy was significantly affected by the number of monitored countdown 

series (F(3.69) = 26.08, p < .001, η2 = .056). Specifically, the temporal accuracy at which targets 
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were marked decreased with a higher number of monitored countdowns (Figure 3C). In detail, 

temporal accuracy was higher for 1 countdown (390 ± 207 ms) compared to 2 countdowns (518 ± 

256 ms; t(23) = 6.00, p < .001), 3 countdowns (536 ± 288 ms; t(23) = 5.48, p < .001) and 4 

countdowns (534 ± 256 ms; t(23) = 7.81, p < .001). There were no significant differences between 

temporal accuracy for 2, 3 and 4 countdowns (all p >.10; all Bonferroni corrected). 

< Insert Figure 3 about here >

Monitoring behavior was significantly affected by the number of monitored countdown 

series. Generally, participants performed more monitoring actions with increasing number of 

monitored countdown series (F(3,69) = 116.19, p < .001, η2 = .465). Specifically, monitoring 

actions increased with each condition (i.e. from 2 to 1 countdown: t(23) = 13.63, p < .001; 3 to 2 

countdowns: t(23) = 4.49, p = .001; 4 to 3 countdowns: t(23) = 5.16, p < .001). Average number 

of monitoring actions per trial was 31.60 ± 7.6 during the 1-countdown condition, 40.76 ± 5.79 

during the 2-countdown condition, 43.43 ± 4.54 during the 3-countdown condition, and 45.04 ± 

4.24 during the 4-countdown condition (Figure 4A). A temporal analysis of monitoring behavior 

(Figure 4B) suggested that monitoring of a specific countdown series (relative to its target 

occurrences) was similar with regards to the temporal proximity to the target, but differed in the 

time before target occurrence. This pattern was confirmed by a significant interaction of 

monitoring actions between time (early vs late within a countdown series) and condition (number 

of monitored countdown series) (F(3, 69) = 44.64, p < .001). The interaction was driven by a 

significant difference between conditions during the early epoch (time bins 1-6; F(3, 69) = 48.32, 

p < .001), and the absence of a significant difference during the late epoch (time bins 10-12; F(3, 

69) = 0.39, p = .761). During the early epoch, pairwise comparisons of monitoring behavior 

indicated significant decreases in monitoring activity with each added countdown series (2 vs 1 
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countdown: t(23) = 4.36, p = .001; 3 vs 2 countdowns: t(23) = 7.22, p < .001; 4 vs 3 countdowns: 

t(23) = 3.89, p = .002; all Bonferroni corrected).

<Insert Figure 4 about here>

For each participant and condition, we calculated the ratio between early and late 

monitoring actions to measure the impact of increased demands on time monitoring on monitoring 

behavior. The ratio of early monitoring actions relative to late monitoring actions decreased with 

the number of monitored counters (Figure 4C), meaning that participants perform more monitoring 

actions when they monitored fewer countdowns, relative to monitoring actions that occurred in 

close temporal proximity to the target. The decrease can be described by linear regression (β = -

.758, F(1,23) = 127.817, p < .001, η2 = .847; quadratic: F(1,23) = 9.342, p = .006, η2 = .289).

Brain imaging results

Part I: Condition-specific brain activation

First, to identify the neural networks involved in monitoring of task time- and deadlines 

during single-, dual-, and multitasking, we obtained neural activation maps for each condition of 

the multitasking paradigm, corrected for activation during the corresponding control-task 

condition (see “Methods – Part I”). For the single-countdown condition, the experimental task, 

relative to the control task, activated middle cingulate cortex and the supplementary motor area 

(SMA), bilateral middle frontal gyrus, bilateral superior temporal gyrus and pole, the right inferior 

parietal cortex, left superior frontal gyrus, and parts of the cerebellum (Figure 5A). With two 

monitored countdowns, the experimental task, relative to the control task, activated extensively 

the visual cortex bilaterally, as well as left and right postcentral gyri, middle and superior frontal 
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gyri, SMA and fusiform gyri, as well as left superior temporal gyrus, and the left parahippocampal 

gyrus (Figure 5B). Similar results were obtained for the condition with 3 countdowns, activating 

extensively the visual cortex, middle and inferior frontal gyri, SMA and midcingulate area, pre- 

and postcentral cortex bilaterally, as well as left superior and inferior temporal gyri (Figure 5C). 

The four-countdown condition activated extensively the visual cortex, fusiform gyrus, SMA, 

middle temporal gyri and poles bilaterally, and middle and frontal gyri (Figure 5D). None of the 

reverse contrasts ([control – experimental] for each of the conditions) resulted in significant 

clusters.

<< Insert Figure 5 about here >>

Condition-specific comparisons

Next, activation was compared between conditions. We observed a significant cluster in 

the precuneus in a one-way ANOVA including all four conditions testing for overall differences 

between the four conditions (MNI: [2 -54 34]; F = 543.24, p(FWE) = .04). Follow-up comparisons 

using the significant cluster as mask revealed no step-wise differences (i.e. 2 > 1, 3 > 2, 4 > 3; all 

p > .05; however, all p < .10; all FWE-corrected). However, there were significant differences in 

comparisons between 3- and 1-countdown conditions (p = .003), 4- and 1-countdown conditions 

(p < .001), and between 4- and 2-countdown conditions (p = .003). Similarly, whole-brain paired 

t-tests revealed no significant clusters for step-wise comparisons (i.e. 2 > 1, 3 > 2, 4 > 3). However, 

a significant cluster in the precuneus was observed when comparing multitask conditions with 3 

and 4 parallel countdown series with the single countdown condition (Table 1). When comparing 
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the 4-countdown multitask condition with the single countdown condition, additional clusters were 

observed in bilateral inferior parietal cortex/intraparietal sulcus, bilateral middle temporal gyrus, 

medial frontal cortex, bilateral occipital cortex, posterior cingulate, and the right parahippocampal 

gyrus (Table 1). In the whole-brain comparisons, no differences were observed between the 

multitask conditions (3 and 4 countdowns) and the two-countdown condition.

<< Insert Table 1 about here >>

Part II: Model specific activation maps

In a complementary approach, we identified brain regions in accordance to model-based 

activation patterns. These results are presented in Figure 6 and Table 2. The linear increase model 

(Figure 2A) was associated with activation in the left IPL (extending into the angular gyrus; p = 

.013), and non-significant clusters in the bilateral precuneus (p = .056), and the right middle 

temporal gyrus (p = .063). Similarly, the dual-task step model (2+; Figure 2B) predicted significant 

clusters of increasing activation in the left IPL (p = .039), and non-significant clusters in the left 

and right precuneus (p = .060) and the left inferior medial frontal lobe (p = .082). The multi-task 

(3+; Figure 2C) step model predicted activation in the precuneus (p = .023) and left IPL (p = .045), 

and non-significant clusters in the right middle temporal gyrus (p = .057). Generally, there was 

extensive overlap between the activation maps of all models, given the similarity of the models.

<< Insert Figure 6 about here >>
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<< Insert Table 2 about here >>

Regions of interest (ROIs) were generated based on the significant clusters obtained from 

the model-specific activation maps (Table 2) for illustration purposes (Figure 7) and for calculation 

of model fits. These ROIs represented the left inferior parietal cortex (center MNI [-34 -68 42]; 

significant cluster in the linear increase model, dual-task step model, and multi-task (3+) step 

model), and the precuneus (MNI [0 -54 36]; significant cluster in multi-task (3+) step model). 

Visual inspection of extracted parameter estimates generally showed increasing activation with 

increased number of monitored countdowns in each ROI. Model fit for the inferior parietal ROI 

was highest for the linear increase model (AIC = 11.26, R2 = .95), followed by the dual-task step 

model (AIC = 17.86, R2 = .72) and the multi-task step model (AIC = 19.33, R2 = .59). For the 

precuneus ROI, model fit was highest for the linear increase model (AIC = 6.37, R2 =.99), followed 

by the multi-task step model (AIC = 19.45, R2 = .73) and dual-task step model (AIC = 20.07, R2 = 

.68). No correlations between behavioral measures (multi-task performance, mental rotation 

ability) and brain activation within these ROIs were detected (all p > .10).

<< Insert Figure 7 about here >>

Model comparisons
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Whereas the cluster in the precuneus was significant only for the multi-task (3+) step model 

(Table 2), no significant differences between model-activation maps of the multitask-step model, 

the dualtask-step model, and the linear-increase model were observed.

Region of interest: hippocampus

In addition to the whole brain, model- and contrast-based analyses, we analyzed condition-

dependent differences in the hippocampal gyri, based on its role on spatial processing 

(Eichenbaum, 2017). No significant differences between conditions were observed for left or right 

hippocampus (1-way ANOVA; all p > .10; Figure 8). However, for both left and right 

hippocampus, model fit was best for the dual-task (2+) step models (left: AIC = 4.91, R2 = .77; 

right: AIC = 4.72; R2 = .80), followed by the linear increase models (left: AIC = 5.57, R2 = .73; 

right: AIC = 8.49, R2 = .48), and the multi-task step models (left: AIC = 9.43, R2 = .30; right: AIC 

= 10.64, R2 = .11). No correlations with behavioral performance were observed (all p > .10).

<< Insert Figure 8 about here >>

Discussion

The main goal of this study was to identify the neural correlates underlying multiple-task 

performance. Specifically, we tested a central assumption of the spatial offloading hypothesis, 

namely whether keeping track of multiple task deadlines relies on spatial processes. 

Overall monitoring accuracy was constantly high across the different numbers of 

countdowns, but detailed analyses suggested that participants adapt their behavior in response to 
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changing task demands. Specifically, when the number of countdowns in the task increased, 

performance for the best countdown in each task condition increased. Performance on additional 

countdowns (2nd, 3rd, 4th best) was reduced, resulting in similar overall performance across task 

conditions (Figure 3B). This pattern may be the result of strategic choices of the participants, in 

which they increased effort with more countdowns, while at the same time focusing on a subset of 

component tasks. Such behavioral facilitation from increasing task demands were recently 

demonstrated within the context of working memory and executive control (Samrani, Marklund, 

Engström, Broman, & Persson, 2018). Moreover, and partly in line with previous studies (Kubik 

et al., 2018, 2019; Mäntylä, 2013; Todorov et al., 2014), performance on this best countdown was 

predicted by participants’ spatial (mental rotation) abilities, even after correction for working 

memory (binding) skills. Importantly, this relation became stronger as a function of increased 

number of monitored countdowns, suggesting that spatial abilities become increasingly important 

in more complex multitasking situations, which require a higher degree of time monitoring due to 

multiple overlapping task timelines. An analysis of participants’ monitoring behavior further 

showed that, despite an overall increased monitoring activity, participants reduced their monitoring 

of each single countdown a relatively long time before the target occurred, whereas monitoring of 

specific countdowns was not affected by the number of (additionally) monitored countdowns in 

close temporal proximity to the target (Figure 4). This pattern of monitoring behavior suggests that 

participants had to rely more on internal representations of the countdowns (rather than 

monitoring/using external sources of information to retrieve the state of a countdown), when more 

countdowns had to be monitored. As hypothesized in the introduction, such internal 

representations may be offloaded onto spatial processes in order to achieve the same level of 

performance. 
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Importantly, the behavioral performance data were accompanied by increased neural 

activation in the precuneus and IPL, in which the BOLD signal increased as a function of task 

complexity. Both these regions were more strongly activated when participants monitored and 

responded to a larger number of parallel tasks. Together, these findings support the idea that 

multiple task timelines are represented spatially, and are in line with the spatial offloading 

hypothesis, by showing that (a) maintaining high behavioral performance is related to individuals’ 

spatial abilities, especially in situations with multiple overlapping task timelines (as in multitask 

situations), and (b) keeping track of multiple overlapping task timelines involves cortical regions 

critical for spatial processing (see below).

A secondary goal of this study was to investigate whether processing of task timelines 

using spatial representations is a general mechanism for time monitoring, or whether such spatial 

offloading is a mechanism involved in keeping track of task timelines specifically in multitasking 

situations (Mäntylä, 2013). Here, using a model-based approach, we did not observe significant 

differences between various models designed to distinguish between predicted neural 

consequences of these possibilities. In fact, dual- and multi-task specific models, as well as a 

general (linear increase) model were all associated with increased activation in a similar set of 

brain regions. For the identified core regions in the inferior parietal cortex and precuneus, a linear 

increase was the best fit for the data, however, no specific pattern of brain activation could be 

exclusively related to a multitasking-specific mechanism. Therefore, our results do not provide 

conclusive support for the spatial offloading hypothesis as a mechanism for time monitoring 

specifically during multitasking. Rather, a spatial offloading should be assumed to be a general 

mechanism for time monitoring in tasks.
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Temporal states and spatiotemporal offloading in the posterior parietal cortex and hippocampus

There is much evidence that the posterior parietal cortex is important for spatial processing, 

including sensory and motor control, spatial cognition, and spatial transformations (Cohen et al., 

1996; Goodale & Milner, 1992; Halari et al., 2006; Jordan et al., 2001; Kesner & Long, 1998; 

Milner & Goodale, 2008; Richter et al., 1997; Sack, 2009; Zacks, 2008). However, the role of the 

posterior parietal cortex is not restricted to spatial processing per se. In fact, the intraparietal lobe 

is also critical for integrating spatial and temporal information (Assmus et al., 2003), and 

overlapping areas in IPL have been shown to process spatial and temporal information (Gijssels et 

al., 2013). Moreover, processes underlying common magnitude systems are thought to be located 

in the lateral posterior parietal cortex (Sokolowski, Fias, Bosah Ononye, & Ansari, 2017). Based 

on these findings, and the observation that cortical activation in IPL increases with the number of 

tasks performed in parallel, IPL may be involved in spatiotemporal offloading. Specifically, 

temporal information about the states of multiple tasks may be represented in general magnitude 

systems, based on spatial processing areas in the lateral posterior parietal cortex.

Temporal information about single, ongoing tasks may be processed and/or maintained in 

the precuneus. Indeed, there is evidence for a role of precuneus in temporal processing from studies 

showing that this region is linked to time estimation over long intervals (Morillon, Kell, & Giraud, 

2009). Specifically, the precuneus, as part of the default mode network, has been associated with 

time estimation for relatively long event durations exceeding 2 seconds, whereas shorter intervals 

are estimated by the motor system (Morillon et al., 2009). Increasing activation in the precuneus 

with the number of tasks, as observed in the current study, suggests that the precuneus estimates 

the temporal progress of multiple tasks when necessary.
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In addition to regions in the posterior parietal cortex, the hippocampus also showed 

increased activation during dual- and multitask conditions, compared to single-task condition 

(Figure 3, 6). In contrast to IPL and precuneus, however, activation in the hippocampi does not 

increase with additional tasks. The hippocampus is known to be involved in spatial processes 

including memory, navigation, and mapping (Eichenbaum, 2017).

Taken together, we suggest that the precuneus, left IPL, and the hippocampus are core 

regions for processing of multiple tasks with overlapping timelines. The precuneus, in line with 

studies relating the precuneus to temporal processing of long (> 2 s) intervals (Morillon et al., 

2009), may be involved in temporal processing of multiple task timelines. The IPL may then form 

relations between different task timelines, using spatial representations and transformations, thus 

shifting cognitive load of temporal processing onto spatial processes through spatiotemporal 

offloading (Mäntylä, 2013; Risko & Gilbert, 2016). The hippocampus, based on the spatiotemporal 

transformation in IPL, may generate and/or maintain a spatial map of the temporal relations within 

a multitasking situation, and/or may be involved in storage of multiple of such maps over the 

course of the experiment. The causal contribution of each of these regions remains to be tested 

experimentally.

Contributions of medial frontal, occipital and temporal cortex

We also observed increased activation outside spatial processing areas of the posterior parietal 

cortex during the experimental task conditions compared to the condition-specific control 

conditions, especially in the medial frontal lobe and the hippocampi (Figure 3, 6). However, here 

we did not observe that activation in frontal cortex scaled with the number of task instances (i.e. 

monitored countdowns). This may be the case because in the present study participants did not 

switch between different task rules and task sets, or stimulus features, as is commonly necessary 
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in dual- and multi-task research (von Bastian & Druey, 2017). Furthermore, we observed increased 

activation in temporal and occipital regions during the experimental task, compared to the control 

task (Figure 3). Activation of the temporal cortices may be related to language processing 

(specifically, processing of letters) and alphabetically structured stimuli (Heinzel et al., 2008; 

Thesen et al., 2012), considering that temporal areas were activated consistently over all 

complexity levels, without systematic increases. Whereas the control condition included letters, 

these did not have to be processed to the same extent. In fact, during the control task, participants 

only had to recognize the letter A, and could ignore any other letter. Finally, stronger activation in 

visual areas during the experimental task conditions, compared to their respective control 

conditions, is most likely related to differences in visual attention to the (matched) visual input.

Interpretational considerations and limitations

Posterior parietal regions such as precuneus and IPL have been related to spatial attention and 

motor control (Lee et al., 2013; Singh-Curry & Husain, 2009). Even though spatial features were 

largely controlled for, compared to previous studies on this topic, it can be argued that the different 

letter series were mapped onto four different fingers. Moreover, in the current task, and in 

particular in conditions with higher number of parallel countdowns, may have increased the 

demands for spatial motor coordination in the sense that participants had to perform the task with 

two hands, and up to four fingers on one of the hands. However, two aspects argue against such 

an explanation. First, we introduced condition-specific control tasks, which were similar in terms 

of motoric complexity in the sense that both hands had to be used, and varying numbers of button 

presses were executed depending on the control condition. Overall, motor output was similar 

between the experimental and control tasks. Another important aspect that argues against a motor 
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complexity explanation of posterior parietal activation increases is the lack of activation in other 

known motor areas, such as premotor and primary motor cortices.

Moreover, it can be argued that the involvement of spatial processes in this task (both in 

terms of neural activation and correlation with measures of spatial abilities, i.e. mental rotation) 

were a direct consequence of the task design and the participants’ strategies to perform the task. 

Specifically, one option is that, given the association between (spatially distinct) response buttons 

and task deadlines/countdowns, task timelines were represented in these spatially distinct locations 

(e.g. finger locations). To this end, the current study cannot clearly distinguish between a direct 

neurally implemented spatial offloading mechanism and an alternative embodied offloading 

strategy. That is, participants may strategically chose to represent the different timelines spatially 

onto their fingers used for responding. However, we argue that both implementations should be 

considered forms of a spatial offloading mechanism. Importantly, both mechanism would be 

realized through recruitment of cortical spatial processing areas, as observed in this study.

The interpretation in this study, that spatial processing areas are involved in keeping track 

of multiple timelines, is based upon observation of increased activation in areas commonly known 

for spatial processing. However, given that participants did not complete a spatial processing task 

(such as the mental rotation task) during fMRI scanning, we were not able to examine whether 

spatial tasks and the deadline monitoring task used in the current study engage overlapping brain 

regions. Moreover, the posterior parietal cortex has also been associated with working memory 

processes, especially working memory updating (Borst & Anderson, 2013; Wager & Smith, 2003). 

It is likely that working memory demands also increase with the number of monitored countdowns 

(i.e. participants need to keep track of a higher number of letters). Therefore, additional research 
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is required where spatial tasks and working memory tasks are tested in the same participants as 

time monitoring tasks using functional neuroimaging techniques.

Conclusion

This study provides evidence that the precuneus represents timelines of multiple tasks and the IPL 

is involved in building spatial representations of the temporal relations of these overlapping task 

timelines. These results are in line with the spatiotemporal offloading hypothesis of multitasking, 

suggesting that spatial processes are used to resolve temporally demanding tasks when dealing 

with overlapping task timelines. Therefore, this study enhances our understanding of the 

neurocognitive mechanisms underlying everyday performance with multiple tasks and 

overlapping deadlines.
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Figure 1: Experimental task. Panel A: Timeline of a single countdown series and corresponding 
responses. Participants responded on two separate response boxes, one with four monitor buttons (right 

hand), and one with a single target button (left hand). The task is presented on a screen. The lower part of 
the screen contains information about the active countdowns (colored boxes). Countdowns are run down the 

alphabet, but are generally hidden from view. Letter countdowns were displayed in the upper part of the 
screen for 1 second upon pressing of one of the four corresponding monitor buttons (screen 2; green series 

displayed upon pressing of the green monitor button, at countdown state “H”). After 1 second, the 
countdown is covered again (3rd screen), until a monitor button is pressed again (5th screen, “A”). When 

the countdown reaches the target letter (A), participants need to press the target button (last screen, single 
button response box). Panel B: Schematic representation of a task sequence. Up to four letter series ran, 

hidden from view (represented as grey letters), at different updating rates and with varying starting letters. 
Pressing a color-coded monitor button (4-button response box, right) displays the corresponding series for a 

short period (color-coded frames, black letters). When a series runs down to A, the target button (single 
button response box, right) needs to be pressed. In this example, targets of the blue and yellow letter 
countdowns were missed (red circles) while a target of the red letter countdown was correctly indicated 

(green circle). 
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Figure 2: Models used to identify brain regions following specific activation patterns depending 
on the number of parallel tasks. Predicted BOLD signal intensity depending on the number of parallel 
tasks for different tested models, i.e. linear increase  model (A), dual-task step model (B; brain regions 

recruited for dual-task+ situations), multi-task (3+) step model (C; brain regions recruited for multitasking 
situations with 3 and more tasks, but not dual-tasking). 
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Figure 3: Behavioural performance (A) monitoring accuracy (B) countdown specific (detailed) monitoring 
accuracy (C) temporal accuracy. Error bars indicate standard error of the mean. 
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Figure 4: Monitoring behavior (A) Monitoring actions by condition/number of monitored counters (B) 
Monitoring behavior relative to target occurrence, depending on number of monitored countdowns. Thick 

lines represent monitoring actions binned in 500 ms windows, relative to target occurrence (up to 6 seconds 
before target occurrence). Thin lines represent standard errors of the mean. Asterisks indicate time bins 

with significant differences between conditions (F-test, 1-way ANOVA; p < .01). (C) Ratio between early [bin 
1-6 (5.5-3 seconds before target occurrence)] and late [bin 10-12, 1.5-0 seconds before target occurrence] 
time bins, depending on number of monitored countdowns. Error bars indicate standard error of the mean. 
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Figure 5: Condition-specific activation maps. Significant clusters (pFWE <. 05; cdt: z = 3.1) from 
contrasts between experimental and control task for each condition (i.e. number of countdowns) are shown. 
. A: Single task (1 countdown); B: Dual task (2 countdowns); C: Multitasking (3 countdowns); D: Multitask 

(4 countdowns). The reverse contrasts [control – experimental] did not result in any significant clusters. 
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Figure 6: Model specific activation maps. Activation following positive (red-yellow) and negative (blue-
green) models. Top: linear model. Middle: dual task step model. Bottom: Multi task (3+) step model. No 
significant clusters were observed for the multi task (4+) step model (not shown). Displayed voxel wise t-

values > 3.1 (uncorrected). See Table 2 for cluster level statistics and details. 
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Figure 7: Parameter estimates of selected regions from model activation maps for illustration. 
Post-hoc comparisons of the experimental vs control task condition (i.e. parameter estimates <> 0) indicate 
that none of the parameter estimates was significantly smaller than zero (all p>.05, uncorrected), indicating 
that the control condition did not result in stronger activation than the experimental condition for any of the 

conditions, within the ROIs. Error bars indicate standard errors of the mean. 
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Figure 8: Parameter estimates of left and right hippocampus ROIs. No significant differences 
between parameter estimates were observed, however, model-based analyses indicated that the dual-task 

(2+) step model had the best fit with the data. Error bars indicate standard errors of the mean. 
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Tables

Table 1: Condition-specific comparisons. Clusters for comparisons with significant activation 

differences are listed (cluster forming threshold: z=3.1; measure: cluster mass). FWE-corrected 

cluster level p-values are shown, based on permutation testing (PALM, see methods).

Contrast/region voxels Z max X [mm] Y [mm] Z [mm] Cluster p

4>1
L anterior IPS/IPL 96 4.932 -34 -62 35 .018
R post. cingulate gyrus 78 4.279 2 -36 32 .019
R frontal medial cortex 64 5.299 4 52 -20 .021
R middle temporal gyrus 60 5.031 54 -4 -20 .021
L/R precuneus 60 4.310 -2 -54 38 .022
L occipital pole (V2) 58 4.624 -26 -100 -10 .022
L occipital pole (V2) 50 4.519 -10 -88 32 .024
R anterior IPS/IPL 47 4.147 36 -64 44 .024
R post. cingulate gyrus 46 4.625 4 -50 8 .024
R hippocampus 35 4.857 26 -26 -18 .028
L middle temporal gyrus 32 4.605 -62 -42 4 .030
L IPL 32 5.080 -52 -74 26 .030
L post, cingulate gyrus 29 4.556 -6 -44 0 .033
R occipital pole (V2) 28 5.248 18 -88 -10 .031
R middle temporal gyrus 25 4.083 64 -4 -24 .042

3>1
L/R precuneus 80 4.758 2 -54 34 .050
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Table 2: model specific activation patterns. Clusters for each model are listed (cluster forming 
threshold: z=3.1; measure: cluster mass). FWE-corrected cluster level p-values are shown, based 
on permutation testing (PALM, see methods). Significant clusters (p<.05) are printed in bold.

Table 2a: Linear increase model

Region voxels Z max X [mm] Y [mm] Z [mm] Cluster p

L inf parietal 308 6.81 -34 -62 36 0.013
L/R precuneus 132 4.88 -2 -54 38 0.056
R mid temporal 118 5.22 54 -6 -20 0.063
R mid cingulum 75 4.26 2 -36 32 0.101
R inf medial frontal lobe 60 5.21 4 52 -20 0.117
R angular g 54 4.47 36 -64 44 0.131
L angular g 50 6.91 -52 -74 26 0.133
cerebellum vermis 26 4.27 2 -52 10 0.226
R lingual 14 5.46 18 -88 -8 0.441

Table 2b: dual-task step model

Region voxels Z max X [mm] Y [mm] Z [mm] Cluster p

L inf parietal 104 5.50 -32 -72 46 0.039
L/R precuneus 54 4.29 -2 -54 38 0.060
L inf medial frontal lobe 33 4.76 -2 46 -26 0.082
R mid temporal 24 5.19 54 2 -26 0.106
R post cingulum 24 4.15 2 -34 30 0.117

Table 2c: multi-task (3+) step model

Region voxels Z max X [mm] Y [mm] Z [mm] Cluster p

L/R precuneus 257 5.08 4 -54 34 0.023
L inf parietal 148 4.79 -34 -74 44 0.045
R mid temporal 116 5.01 52 -10 -18 0.057
R post cingulum 52 4.40 10 -36 30 0.112
R mid frontal g 50 4.41 36 22 44 0.114
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L inf tri frontal 45 5.00 -54 34 10 0.118
L angular 39 5.89 -52 -74 26 0.132
L mid frontal 32 4.43 -22 20 38 0.156
R angular 22 3.97 42 -68 48 0.24
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